Anthelmintic Efficacy of Flemingia vestita (Fabaceae): Genistein-induced Alterations in the Ultrastructure of the Tegument in the Cestode, Raillietina echinobothrida

P. PAL AND V. TANDON
Parasitology Laboratory, Department of Zoology, North-Eastern Hill University Shillong 793 022, Meghalaya, India

To investigate the anthelmintic efficacy of Flemingia vestita, an indigenous leguminous plant of Meghalaya, the crude extract of its root-tuber peel and active chemical component, genistein, were tested in respect of the tegument ultrastructure of the fowl tapeworm, Raillietina echinobothrida. Alterations and deformity in the structure of the tegument were revealed in the treated worms. Alterations in the contour of microtriches and disorganization of the tegumental region were conspicuously evident; the parasite exposed to the crude root-tuber peel extract showed deformed microtriches. The tegument, inner sub tegumental region and muscle layers were the sites predominantly affected by the genistein treatment; severe distortion and disorganization occurred in the region of microtriches, and the inner sub tegumental region showed pronounced vacuolization in comparison to control. The reference drug, praziquantel, also caused deformity in the parasite, somewhat at par with the genistein treatment.

Key words: Anthelmintic; Flemingia vestita; Genistein; Ultrastructure; Tegument; Cestode; Raillietina echinobothrida

Plant products provide and are gaining importance as an alternative to current medicinal practices involving chemotherapy (Didier et al., 1988; Robinson et al., 1990). Flemingia vestita Bentham and Hooker (Family Fabaceae) is an indigenous medicinal plant of Meghalaya (North-East India). Its fleshy tuberous roots are consumed unpeeled and raw to cure intestinal worm infections. Anthelmintic efficacy of this plant has been tested using several parameters. In-vitro treatment of the adult cestodes, viz., Fasciolopsis buski and Artyfechinostomum sufrartex, with the crude extract of the root-tuber peel of F. vestita induces paralysis and pronounced tegumental damage and disruption in the flukes (Roy and Tandon, 1996). While the crude extract of the root-tuber peel seems effective against cestode and cestode parasites, it did not show any effect on the viability of the nematode parasites (Tandon et al., 1997). The major active component of the peel which has been identified to be genistein (Reo and Reddy, 1991) induc es paralysis and deformity in the surface fine topography of the cestode, R. echinobothrida (Tandon et al., 1997). Genistein was also shown to cause alterations in the activity of acetylcholinesterase and tegumental enzymes viz., acid phosphatase, alkaline phosphatase, adenosine triphosphatase and 5'-nucleotidase in this parasite (Pal and Tandon, 1998, in press).

As an effect of anthelmintic drug action, at structural and cellular levels, alterations were significantly observable in the tegument of helminth parasites (Gonnert and Andrews, 1977; Grzywasz, 1980; Imai et al., 1981; Mehlhorn et al., 1981; 1983; Schmahl and Mehlhorn, 1985; Schmahl and Taraschewski, 1987; Bogoyavlenskii et al., 1988; Zheng and Zhang, 1988; Xiao et al., 1989). Destructive, degenerative and necrotic alterations to the absorption surfaces of Fasciola hepatica were prominent after treatment with luxabendazole (GorchiIova et al., 1990) and also with the decacylated (amine) metabolite of diaminophenidene (Anderson and Fairweather, 1995). Jiang and Xia (1992) noted ultrastructural alterations in Paragonimus heteroticeps treated with praziquantel and albendazole. Xu et al. (1994) reported tegumental damages in adult Schistosoma japonicum after in vivo treatment with levo-praziquantel.

The present study was set out to examine the internal changes that occur in the tegument of the cestode, R. echinobothrida, following treatment with genistein and may lead to the damage visible internally in the parasite.

MATERIALS AND METHODS

Drugs: The root-tuber peel extract and genistein were obtained from F. vestita following the procedure previously described by Tandon et al. (1997). Synthetic genistein (Sigma code no. C6649) was also used besides the pure genistein extracted from the plant material. Praziquantel was used as the reference drug.

Experimental parasites and treatment: The adult cestodes, R. echinobothrida (Megnin, 1888) were collected from the intestine of domestic fowl in 0.9% phosphate buffered saline
Fig. 1-4: Transmission electron micrographs of R. echinobothrida (control). Fig. 1, 2: Tegument in ultrathin section, showing microtriches (MC), outer plasma membrane (OPM), cytoplasmic zone (CZ), inner plasma membrane (IPM), muscle components (M) and parenchymal cell (PC). X 7,800 and 12,500, respectively. Fig. 3: Microtriches as seen at higher resolution. The electron-dense cap (EC), the shaft (SF) and invaginations (IN) of outer plasma membrane are clearly seen. X 33,750. Fig. 4: Muscular components, at higher resolution. X 50,000.

(PBS, pH 7.7-7.3), from freshly slaughtered hosts at local abattoirs in Shillong. The worms were incubated at 37 ± 1°C for treatment with 50 mg/ml crude extract, 0.5 mg/ml genistein and 0.01 mg/ml praziquantel, all made in dimethyl sulfoxide (DMSO) as per the dosages determined previously as causing paralysis of the worm within reasonable time of incubation (Tandon et al., 1997). Three replicates for each incubation medium were used. After exposure to the treatment the paralyzed worms were processed for ultrastructural studies along with one set of control specimens maintained in 1% DMSO in PBS.

Transmission electron microscopy: The paralyzed cestode
material was fixed in 3% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2 for 4 h. The samples were washed for 1 h in cacodylate buffer and postfixed in 1% osmium tetroxide buffered in 0.1 M sodium cacodylate for 1 h. All processing was undertaken at 4°C. After three washes, samples were dehydrated through graded acetone, transferred to propylene oxide, and embedded in araldite. Sections were cut on a LKB-2988 Bromma microtome, placed on 300 mesh copper grids and stained with uranyl acetate and lead citrate and examined with a JEOL-JEM-100 CX II transmission electron microscope.

RESULTS

Control: Histologically, the body of the cestode is covered with a thin tegument. Ultrastructurally, the body surface is elaborated by the presence of a cytoplasmic zone consisting of numerous ovoid vesicles and bordered externally and internally by an outer and inner plasma membrane, respectively. The outer plasma membrane has got impushings towards the inner side in the form of small invaginations; it is also in continuity with the outer covering of the microtriches. Each microtrich is elongated and distinguished into two parts, an electron-dense cap and an electron-lucent shaft. The cytoplasmic zone is followed by a musculature zone where muscle cells are observed. The ultrastructural observations in the controls are presented in Fig. 1-4.
Treated Worms: After treatment with genistein severe alterations were identifiable under transmission electron microscope, especially in the tegument of the parasite. The first sign of damage was vacuolization in the tegumental region. Conspicuous vacuolization of the tegument became obvious after 20 min of incubation in media containing crude extract. and was more pronounced after 60 min of incubation, indicating a time-dependent effect of genistein. Furthermore, the microtriches were affected at their apices, their surface coat was reduced to a thin layer and all the ovoid vesicles were destroyed and large holes were observed. The external plasma membrane was heavily damaged and formed distorted pieces. The subtegumental region showed severe distortion with disorganization of the cytoplasmic zone and tegumental musculature. Changes were also visible in the praziquantel-treated parasite; after treatment with 0.01 mg/ml for 0.47 hr (when paralysis set in) dramatic alterations in the tegument were observable somewhat at par with the genistein-treated parasite. Ultrastructural changes in the treated worms are presented in Fig. 5-8.

DISCUSSION

The present study demonstrates that the genistein component of *F. vestita* has a marked deleterious effect on the bowel tapeworm, *R. echinobothrida*. In the treated worm, alterations in the contour of microtriches and disorganization of the tegumental region were conspicuous; while the microtriches exhibited deformation and clumping, the tegumental region showed pronounced vacuolization and loss of muscular components in comparison with the control. In *Taenia taeniformis* and *Hymenolepis nana*, Borgers et al. (1975) and Verheyen et al. (1976) reported an increase in undefined secretory substances in the golgi areas. Isatin in combination with bunamidine produced hypervacuolization of the tegumental cytoplasmic syncytium in the secondary cysts of *Echinococcus multilocularis* (Hart et al., 1977). Becker et al. (1981) also reported vacuolization in the syncytial zone as an effect of praziquantel on several species of cestodes including *E. multilocularis*. Tegumental alterations and severe vacuolization on exposure to fluakicidal drugs have been observed in several species of trematodes (Schmah and Tarasewkski, 1987; Zheng and Zhang, 1988; Gorchilova et al., 1990; Jiang et al., 1990; Jiang and Xia, 1992; Schmah, 1993; Stitt and Fairweather, 1993; Xu et al., 1994); the extent of damage induced was reported to increase with exposure time. Similar changes were also noticed in the tegument of cestode parasites (Irimaj et al., 1981; Delahre-Defayolle et al., 1989; Perez et al., 1994). Whereas in digenetic trematodes the vacuoles were found to originate from the basal lamina (Mehlhorn et al., 1993), in the monogenean *Dichlidophora* spp., the site of their origin was the surface of the tegument (Schmah and Mehlhorn, 1985). Changes also occurred in the tegumental cells, which were indicative of a disruption in the synthesis and release of tegumental secretory bodies. The ultrastructural changes in the tegument are linked to a possible mode of action of the drug as an inhibitor of protein synthesis (Anderson and Fairweather, 1995). Vacuolization and contraction in the parasite body surface have been attributed to the levels of Ca²⁺ concentration in the media used (Bricker et al., 1982; Xiao et al., 1984), imbalance in osmosis and alterations in the transmembranous ion flux consequent to treatment with the drug (Schmah and Mehlhorn, 1985; Sobh et al., 1986). Disruption of the cuticular interface and/or intestinal epithelium and degenerative changes even in the subcuticular region have been reported in several nematode species exposed to anthelminitics in vitro (Kaur and Sood, 1983; Bogoyavlenskii et al., 1988; Semenkov and Akil'zhanov, 1988, Xiao et al., 1989; An, 1990; Storte et al., 1990; Mackenstedt et al., 1993; Rothwell and Sangster, 1996).

Perhaps genistein, the chemical component in the root-tuber peel of *F. vestita*, might bring about permeability changes in the tegument of the worm. The deleterious alterations in the tegumental architecture of *R. echinobothrida* may be responsible for the loss of spontaneous movement and paralysis and hence detachment from the host's gut. The genistein component of *F. vestita*, thus, seems to have a vermisfugal action.

ACKNOWLEDGEMENTS

This study was supported by a grant from G.B. Pant Institute of Himalayan Environment and Development (Ministry of Environment and Forests, Govt. of India) to VT and partially by the DRRS program of the University Grants Commission, New Delhi to the Department of Zoology, NEHU.

REFERENCES

metacestodes: Biochemical and ultrastructural investigations on the
effect of isatin (2-3 indoline dione) in vivo. Journal of Antimicrobial
Didier, J.M., Bundy, D.A.P. and Mckenzie, H.I. 1988. Traditional
treatment and community control of gastrointestinal helminthiasis
in St. Lucia, West Indies. Transactions of the Royal Society of
Tropical Medicine and Hygiene 82: 303-304.
with the SEM of Raillietina macracantha Faustman, 1908, parasite of
Colubra livia domestica captured in the Canarau Islands (North
spectrum anti-schistosomal agent. Zeitschrift fur Parasitenkunde
52: 129-150.
Gorchilova, L., Polyakova-Krusteva, O., Spaldonova, R. and
Vinarova, M. 1990. Structural and functional characteristics of the
tegument and intestinal wall in mature Fasciola hepatica after
Grzywacz, M. 1980. Morphological changes in the cuticle of Ascaris
suum influenced by anthelmintics. Parazytologiczne 26: 45-51.
Hart, R.J., Turner, R. and Wilson, R.G. 1977. A biochemical and
ultrastructural study of the mode of action of benanamide against
Hamnolepis nana. International Journal for Parasitology 7: 129-
134.
1981. Light and SEM-examination on the effects of Parnomonycin
sulfate on Hymenolepis nana in vitro. Japanese Journal of
Parasitology 30: 397-404.
Ultrastructural studies on effects of colchicine in treating hepatic
fibrosis of schistosomiasis in rabbits. Chinese Journal of Parasitology
and Parasitic Diseases 8: 84-87.
observations on the effects of praziquantel and albendazole on
Paragonimus heterotacious in rats. Chinese Journal of Parasitic
Disease Control 5: 264-266.
Kaur, R. and Sood, M.L. 1983. Effects of anthelmintics on the
absorptive surfaces of adult Haemonchus contortus in vitro: a
histological study. Folia Parasitologica (Praha) 30: 146.
Effects of pyrantel pamoate on adult and preadult Toxocara canis
worms - an electron microscope and autoradiography study.
Parasitology Research 79: 567-578.
Mehlhorn, H., Becker, B., Andrews, P., Thomas, H. and Frankel,
J.K. 1981. In vivo and in vitro experiments on the effects of
praziquantel on Schistosoma mansoni: a light and electron
microscopic study. Arzneimittelforschung 31: 544-554.
Mehlhorn, H., Kojima, S., Rim, J.I., Ruenwongsa, P., Andrews, P.,
Thomas, H. and Bunning, B. 1983. Ultrastructural investigations on
the effects of praziquantel on human trematodes from Asia:
Clonorchis sinensis, Metagonimus yokogawai, Opisthorchis
viverrini, Paragonimus westermani and Schistosoma japonicum.
Arzneimittelforschung 33: 91-98.
vestita (Fabaceae): Genistein-induced alterations in the esterase activity
in the cestode, Raillietina echinochoadrus. Journal of Biosciences 23:
25-31.
vestita (Leguminosae): Genistein-induced alterations in the activity
of tegumental enzymes in the cestode, Raillietina echinochoadrus.
Parasitology International (in press).
effects of albendazole and albendazole sulphone combination
therapy on Echinococcus granulosus in vitro. International Journal
for Parasitology 24: 219-224.
Robinson, R.D., Williams, L.A.D., Lindo, J.F., Terry, S.I. and
Mansingh, A. 1990. Inactivation of Strongyloides stercoralis
filiform larvae in vitro by six Jamaican plant extracts and three
commercial anthelmintics. West Indian Medical Journal 39: 213-
217.
 treatment on the ultrastructure of Haemonchus contortus.
International Journal for Parasitology 26: 49-57.
Roy, B. and Tandon, V. 1996. Effect of root-tuber extract of Fasciina
vestita, a leguminous plant, on Artyfichinostomum subfusiforme and
Fasciinaopsis buski: a scanning electron microscope study.
triazine derivative HOE 902 V on Monogenea: a light and
transmission electron microscopy study. Parasitology Research 79:
559-566.
Praziquantel effective against Monogenea (Dactylogyrus vastator,
Dactylogyrus extensus, Diplozoon paradoxa). Zeitschrift fur
Parasitenkunde 71: 727-737.
2. Effects of praziquantel, nielsamide, levamisol-HCl and metrifonate on
Monogenea (Gyrodactylus aculeatus, Diplozoon paradoxa). Parasitology Research 73: 341-351.
intestinal and digestive system of Bunostomum trigonocephalum
exposed to Panacur (fenbendazole). Sbornik Nauchnykh Trudov
Leningradskii Veterinar'nyii Institut 94: 85-88.
Sobben, P., Wanichanond, C., Sattongdee, P., Koonchornboon, T.,
Ibulphanraj, P., Upatham, E.S., Puengtomwanakul, S. and
Sirisinha, S. 1986. Scanning electron microscopic study of
Opisthorchis viverrini tegument and its alterations induced by
surface changes in adult and juvenile flukes following treatment in
vitro with the sulphoxide metabolite of triobendazol (Fasinex).
Parasitology Research 79: 529-536.
Sikese, G., Darge, K. and Bonow, I. 1990. Morphological alterations of
male Onchocerca volvulus after exposure to Mel W and Milbemycin A confirming the results of viability tests. Tropical
Medicine and Parasitology 41: 429-436.
vitro anthelmintic activity of root-tuber extract of Fasciina
vestita, an indigenous plant in Shillong, India. Parasitology Research 83:
492-498.
The effects of mebendazole on the ultrastructure of cestodes. In
Biochemistry of Parasites and Host-Parasite Relationships; ed Van
den Bossche, H. pp 605-618, Amsterdam: Elsevier/North Holland
Biomedical Press.
Praziquantel-induced vesicle formation in the tegument of male
Schistosoma mansoni is calcium dependent. Journal of Parasitology 70:
177-179.
